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Summary 
 
A stochastic model is developed to estimate gas saturation 
and porosity using seismic AVO and EM data. Markov chain 
Monte Carlo (MCMC) sampling methods are used to obtain 
posterior probability density functions of unknown 
parameters constrained by seismic AVO and EM data and 
prior information. Unlike conventional inverse methods, 
which search for an optimal solution giving the smallest 
misfit, MCMC methods estimate probability density 
functions of unknown gas saturation and porosity. This 
allows for evaluation of uncertainty as well as estimation of 
those parameters. A synthetic study, typical of gas 
exploration in the deep water of the Gulf of Mexico, is 
developed to demonstrate the benefits of joint inversion of 
seismic AVO and EM data. Results show that the inclusion 
of EM data reduces the uncertainty and ambiguity in gas 
saturation and porosity estimation. 
 
Introduction 
 
Exploring economic gas resources in the deep water of the 
Gulf of Mexico (GOM) is very difficult. Widely used seismic 
imaging techniques (such as seismic AVO) can provide 
detailed information about geological structures and units 
that contain hydrocarbon gas, but cannot discriminate 
between non-economic and economic gas concentrations due 
to the insensitivity of seismic velocity and density to gas 
saturation. Marine electromagnetic (EM) methods have the 
ability to discriminate between non-economic and economic 
gas saturation because electrical resistivity of reservoir 
materials is highly sensitive to gas saturation (through the 
water saturation), as evidenced by Archie’s Law (Archie, 
1942). However, inversion of EM data only is subject to a 
large degree of uncertainty since porosity and geological 
units are not well defined. Furthermore, the vertical 
resolution of EM data is generally poorer than the associated 
seismic resolution. 
 
Since seismic AVO and EM data provide complementary 
information for determining rock physical and reservoir 
parameters, joint inversion of those data may have 
advantages over the inversion of the individual data sets. 
Figure 1 is a schematic map showing relationships among 
reservoir parameters (porosity and gas saturation), acoustical 
properties (velocity and density), electrical properties 
(resistivity), and seismic AVO and EM data. Since both gas 

saturation and porosity are related to seismic AVO and EM 
data, we hypothesize that joint inversion of seismic AVO and 
EM data will provide better estimates of gas saturation and 
porosity than using each data type in isolation. 
 
In this study, we test our hypothesis using a sampling-based 
stochastic model, based on a typical situation of gas 
exploration in the Gulf of Mexico. In this preliminary study, 
we make the following assumptions: (1) both seismic AVO 
and EM data are obtained from one-dimensional (or layered) 
models, (2) the thickness and electrical resistivity of the 
overburden are known, and (3) rock physical models for 
linking different types of parameters are known. In a future 
study, we will extend our methodology to the case where EM 
data are obtained from a two- or three-dimensional forward 
model. We will also investigate the effects of uncertainty in 

overburden and in rock physical models. 
 
Figure 1: Relationships between reservoir parameters and 
geophysical attributes.  
 
 
Method 
 
Stochastic Model  
 
We consider layered (or one-dimensional) models for both 
seismic AVO and EM surveys. Suppose we have collected 
seismic AVO data (reflectivity) from several incident angles, 
and marine EM data (electrical field) from different offsets 
using several frequencies. Since the goal of this study is to 
estimate gas saturation within a given depth interval (target 
zone), we assume the thickness and electrical resistivity of 
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overburden are obtained from other sources of information. 
The effects of overburden on gas saturation estimation will 
be investigated in a future study. We also assume that the 
reservoir does not contain oil in the current model, which will 
be included in the final model.  
 
Let φi and Sgi represent porosity and gas saturation in layer-i. 
Let R and E represent seismic AVO and EM data. Let τr and 
τe represent the inverse variances of the measurement errors 
of seismic AVO and EM data. According to the Bayes’ 
theorem (Rubin, 2003), the stochastic model is given by:  
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The first term at the right side of Equation 1 is referred to as 
the likelihood function, which is the link between the seismic 
AVO and EM data and the unknown porosity and gas 
saturation. The second term is the prior distribution of the 
unknown parameters, which is obtained from other sources of 
information. Equation 1 defines a joint posterior probability 
distribution function. Our goal is to obtain the marginal 
posterior distribution function of each unknown parameter 
from the joint distribution.  
 
Likelihood Model 
 
Since seismic AVO and EM data are different types of 
geophysical measurements of subsurface properties, we 
assume they are independent of each other. Therefore, we can 
simplify the likelihood function shown in Equation 1 as 
follows: 
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Each term on the right side of the above equation is obtained 
using its corresponding forward model.  
 
Seismic AVO data are direct functions of seismic P- and S-
wave velocities and bulk density (Mavko et al., 1998). All the 
parameters are related to gas saturation and porosity through 
rock physical relations (Figure 1). Consequently, we can 
write the AVO data as:  
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where vector ε  is the measurement error of AVO data. We 
assume the measurement error is normally distributed with 
zero mean and an inverse covariance matrix of , here 

is the m-dimensional identity matrix and m is the total 
number of AVO data. Similarly, we can determine the 
likelihood function of EM data. Since EM data span several 
orders of magnitude, we use relative errors instead of 
absolute errors. The likelihood function of EM data can be 
written as follows: 
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Vector is the relative error of EM data, which is 
assumed to be normally distributed with zero mean and 
an inverse covariance of

eε
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Prior Model 
 
The prior distribution function in Equation 1 summarizes the 
information not included in the likelihood functions. In this 
study, we make the following assumptions: (1) measurement 
errors of seismic AVO and EM data are independent of gas 
saturation and porosity, (2) gas saturation and porosity at 
each layer are independent of each other, and (3) gas 
saturation at each layer is uniformly distributed on [0,1] and 
porosity is uniformly distributed on [0, 0.35]. The above 
assumptions are physically justified for reservoirs in the deep 
water of the Gulf of Mexico. 
 
Sampling Method 
 
The method for obtaining the marginal posterior distribution 
function of each unknown parameter is key to the success of 
the stochastic model. Since forward models of seismic AVO 
and EM data are highly nonlinear and the number of 
unknown parameters is large, conventional analytical 
methods are limited. We use a Markov Chain Monte Carlo 
(MCMC) sampling method to obtain many realizations of 
each marginal posterior distribution function. MCMC 
methods are a powerful tool for dealing with complicated 
statistical models involving a large number of dependent 
variables (Gilks et al., 1996). Using those samples, we can 
make inferences on each unknown parameter, such as its 
mean, variance, and probability density function.  
 
We adopt three methods to speed up the MCMC sampling 
process. Firstly, we construct transformations of both gas 
saturation and porosity using the logistic function. Secondly, 
we apply a mixing algorithm (Tierney, 1994), which includes 
independent sampling, Gaussian random walk, antithetic 
variable methods, and random shuffling. Finally, we use the 
Metropolis-coupled MCMC method to run several chains to 
improve the mixing. By using those techniques, we are able 
to obtain many samples following a relatively short burn-in 
stage. 
 
Synthetic Study 
 
Our goal in this study is to demonstrate the benefits of 
combining EM and seismic AVO data for gas saturation 
estimation. Here we shall consider a layered model, where 
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the sea floor is 1000m under the water surface and the 
overburden is 2000m under the sea floor. Five layers lie 
beneath the overburden. The thickness of each layer is 30m. 
The gas saturation of the true model is 0.05, 0.95, 0.4, 0.9, 
and 0.1, respectively, from the upper layer to the bottom 
layer, and the porosity of the true model is 0.15, 0.25, 0.15, 
0.1, and 0.05, respectively.  
 
The synthetic data include seismic AVO data from five 
offsets (incident angles 0, 10, 20, 30, and 40 degrees) and 
marine EM data using five different frequencies (0.1, 0.25, 
0.5, 1.0, and 2.0 Hz) from six offsets (source-to-receiver 
distances 4, 5, 6, 7, 9 and 10 km). Thirty percent Gaussian 
random noises are added to the true AVO data and fifteen 
percent random noises to the true EM data. We use the rock 
physics models described by Hoversten et al (2003) to link 
gas saturation and porosity to seismic velocity, bulk density, 
and electrical resistivity.  
 
We first estimate gas saturation and porosity using seismic 
AVO data only. The estimated probability density functions 
of gas saturation and porosity at five layers are shown in 
Figures 2 and 3 as red dashed lines. From those figures, we 
can see that the seismic AVO data provide good estimates of 
porosity in the first four layers, but a poor estimate at layer 5. 
This is because the last layer is poorly constrained by the  
data as compared to other layers. Seismic AVO data is less 
sensitive to the distribution of gas saturation. Although the 
modes of the first three layers are close to their corresponding 
true values, the uncertainty is rather large. In addition, 
seismic data almost provide no information about gas 
saturation in the last two layers. 
 
The estimated probability density functions of gas saturation 
and porosity using both seismic AVO and EM data are shown 
in Figures 2 and 3 as black solid lines. From the comparison 
between the estimates obtained from seismic AVO data only 
and from the joint inversion, we can see that EM data 
significantly reduce the uncertainty associated with estimates 
of gas saturation in the first three layers, and successfully 
identify the high gas saturation in layer 4 and the low gas 
saturation in layer 5. Also note that EM data reduce the 
uncertainty associated with the porosity estimates in all the 
five layers. 
 
Conclusions 
 
We have developed a sampling-based stochastic model for 
estimating gas saturation and porosity, and applied the 
methodology to investigate the usefulness of combining EM 
and seismic AVO data for gas saturation and porosity 
estimation. The developed model provides the estimated 

probability density function rather than a single optimal 
solution of each unknown variable. This allows us to fully 
characterize the unknown variable, such as its mean, 
variance, mode, range, and even various predictive intervals.  
 
The synthetic study based on the layered model has shown 
that the incorporation of EM data into gas saturation and 
porosity estimation significantly reduces the uncertainty in 
both gas saturation and porosity estimation. Most 
importantly, EM data can help to successfully identify high 
gas concentrations in the deep layer, which is not possible 
when using only seismic AVO data. 
 
We have made several assumptions in this preliminary study. 
These assumptions may affect the accuracy of gas saturation 
and porosity estimation. For example, the electrical resistivity 
of the overburden was assumed to be known and uncertainty 
in rock physical models was not considered. We will explore 
those effects in a future study. We will also extend our 
approach to two- or three-dimensional forward models. 
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Figure 3: Comparison of estimated porosity (Red
dashed lines: using seismic AVO data only, and black
solid lines: using both seismic AVO and EM data) 
 

0.03 0.04 0.05 0.06 0.07 0.08
0

200

400

600

P
ro

ba
bi

lit
y 

de
ns

ity

Layer 1: True Sg=0.05

0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

P
ro

ba
bi

lit
y 

de
ns

ity

Layer 2: True Sg=0.95

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

P
ro

ba
bi

lit
y 

de
ns

ity

Layer 3: True Sg=0.4

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

P
ro

ba
bi

lit
y 

de
ns

ity

Layer 4: True Sg=0.9

0 0.2 0.4 0.6 0.8 1
0

1

2

3

P
ro

ba
bi

lit
y 

de
ns

ity

Gas saturation

Layer 5: True Sg=0.1

Figure 2: Comparison of estimated gas saturation (Red
dashed lines: using seismic AVO data only, and black
solid lines: using both seismic AVO and EM data) 


